Opioid receptors are a group of inhibitory G protein-coupled receptors with as ligands. The endogenous opioids are , , , and nociceptin. The opioid receptors are ~40% identical to somatostatin receptors (SSTRs). Opioid receptors are distributed widely in the brain, in the spinal cord, on peripheral neurons, and digestion.
|
| |
|
| |
| Gi | |
| |
| |
| |
| |
(I). Name based on order of discovery
The receptor families delta, kappa, and mu demonstrate 55–58% identity to one another, and a 48–49% homology to the nociceptin receptor. Taken together, this indicates that the NOP receptor gene, OPRL1, has equal evolutionary origin, but a higher mutation rate, than the other receptor genes.
Although opioid receptor families share many similarities, their structural differences lead to functional difference. Thus, mu-opioid receptors induce relaxation, trust, satisfaction, and analgesia. This system may also help mediate stable, emotionally committed relationships. Experiments with juvenile guinea pigs showed that social attachment is mediated by the opioid system. The evolutionary role of opioid signaling in these behaviors was confirmed in dogs, chicks, and rats. Opioid receptors also have a role in mating behaviors. However, mu-opioid receptors do not just control social behavior because they also make individuals feel relaxed in a wide range of other situations.
Kappa- and delta-opioid receptors may be less associated with relaxation and analgesia because kappa-opioid receptor suppresses mu-opioid receptor activation, and delta-opioid receptor interacts differently with agonists and antagonists. Kappa-opioid receptors are involved in chronic anxiety's perceptual mobilization, whereas delta-opioid receptors induce action initiation, impulsivity, and behavioural mobilization. These differences led some researches to suggest that up- or down-regulations within three opioid receptors families are the basis of different dispositional emotionality seen in psychiatric disorders.
Human-specific opioid-modulated cognitive features are not attributable to coding differences for receptors or ligands, which share 99% similarity with primates, but to regulatory changes in expression levels.
The opioid receptor types are nearly 70% identical, with the differences located at the N and C termini. The μ receptor is perhaps the most important. It is thought that the G protein binds to the third intracellular loop of all opioid receptors. Both in mus musculus and , the genes for the various receptor subtypes are located on separate chromosomes.
Separate opioid receptor subtypes have been identified in human tissue. Research has so far failed to identify the genetic evidence of the subtypes, and it is thought that they arise from post-translational modification of cloned receptor types.
An IUPHAR subcommittee "Opioid receptors". IUPHAR Database. International Union of Pharmacology (2008-08-01). has recommended that appropriate terminology for the 3 classical (μ, δ, κ) receptors, and the non-classical (nociceptin) receptor, should be MOP (" Mu OPiate receptor"), DOP, KOP and NOP respectively.
The existence of further opioid receptors (or receptor subtypes) has also been suggested because of pharmacological evidence of actions produced by endogenous opioid peptides, but shown not to be mediated through any of the four known opioid receptor subtypes. The existence of receptor subtypes or additional receptors other than the classical opioid receptors (μ, δ, κ) has been based on limited evidence, since only three genes for the three main receptors have been identified. The only one of these additional receptors to have been definitively identified is the zeta (ζ) opioid receptor, which has been shown to be a cellular growth factor modulator with met-enkephalin being the endogenous ligand. This receptor is now most commonly referred to as the OGFr.
When an agonistic ligand binds to the opioid receptor, a conformational change occurs, and the GDP molecule is released from the Gα sub-unit. This mechanism is complex, and is a major stage of the signal transduction pathway. When the GDP molecule is attached, the Gα sub-unit is in its inactive state, and the nucleotide-binding pocket is closed off inside the protein complex. However, upon ligand binding, the receptor switches to an active conformation, and this is driven by intermolecular rearrangement between the trans-membrane helices. The receptor activation releases an ‘ionic lock’ which holds together the cytoplasmic sides of transmembrane helices three and six, causing them to rotate. This conformational change exposes the intracellular receptor domains at the cytosolic side, which further leads to the activation of the G protein. When the GDP molecule dissociates from the Gα sub-unit, a GTP molecule binds to the free nucleotide-binding pocket, and the G protein becomes active. A Gα(GTP) complex is formed, which has a weaker affinity for the Gβγ sub-unit than the Gα(GDP) complex, causing the Gα sub-unit to separate from the Gβγ sub-unit, forming two sections of the G protein. The sub-units are now free to interact with effector proteins; however, they are still attached to the plasma membrane by lipid anchors. After binding, the active G protein sub-units diffuses within the membrane and acts on various intracellular effector pathways. This includes inhibiting neuronal adenylate cyclase activity, as well as increasing membrane hyper-polarisation. When the adenylyl cyclase enzyme complex is stimulated, it results in the formation of Cyclic Adenosine 3', 5'-Monophosphate (cAMP), from Adenosine 5' Triphosphate (ATP). cAMP acts as a secondary messenger, as it moves from the plasma membrane into the cell and relays the signal.
cAMP binds to, and activates cAMP-dependent protein kinase A (PKA), which is located intracellularly in the neuron. The PKA consists of a holoenzyme - it is a compound which becomes active due to the combination of an enzyme with a coenzyme. The PKA enzyme also contains two catalytic PKS-Cα subunits, and a regulator PKA-R subunit dimer. The PKA holoenzyme is inactive under normal conditions, however, when cAMP molecules that are produced earlier in the signal transduction mechanism combine with the enzyme, PKA undergoes a conformational change. This activates it, giving it the ability to catalyse substrate phosphorylation. CREB (cAMP response element binding protein) belongs to a family of transcription factors and is positioned in the nucleus of the neuron. When the PKA is activated, it phosphorylates the CREB protein (adds a high energy phosphate group) and activates it. The CREB protein binds to cAMP response elements CRE, and can either increase or decrease the transcription of certain genes. The cAMP/PKA/CREB signalling pathway described above is crucial in memory formation and pain modulation. It is also significant in the induction and maintenance of long-term potentiation, which is a phenomenon that underlies synaptic plasticity - the ability of synapses to strengthen or weaken over time.
Voltage-gated dependent calcium channel, (VDCCs), are key in the depolarisation of neurons, and play a major role in promoting the release of neurotransmitters. When agonists bind to opioid receptors, G proteins activate and dissociate into their constituent Gα and Gβγ sub-units. The Gβγ sub-unit binds to the intracellular loop between the two trans-membrane helices of the VDCC. When the sub-unit binds to the voltage-dependent calcium channel, it produces a voltage-dependent block, which inhibits the channel, preventing the flow of calcium ions into the neuron. Embedded in the cell membrane is also the G protein-coupled inwardly-rectifying potassium channel. When a Gβγ or Gα(GTP) molecule binds to the C-terminus of the potassium channel, it becomes active, and potassium ions are pumped out of the neuron. The activation of the potassium channel and subsequent deactivation of the calcium channel causes membrane hyperpolarization. This is when there is a change in the membrane's potential, so that it becomes more negative. The reduction in calcium ions causes a reduction neurotransmitter release because calcium is essential for this event to occur. This means that neurotransmitters such as glutamate and substance P cannot be released from the presynaptic terminal of the neurons. These neurotransmitters are vital in the transmission of pain, so opioid receptor activation reduces the release of these substances, thus creating a strong analgesic effect.
|
|